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INTRODUCTION 

Vehicle classification data are used in many transportation applications, including: pavement design, 
environmental impact studies, traffic control, and traffic safety (FHWA, 2001). There are several classification 
methods, including: axle-based (e.g., pneumatic tube and piezoelectric detectors), vehicle length-based (e.g., dual 
loop and some wayside microwave detectors), as well as emerging machine vision based detection. Each sensor 
technology has its own strengths and weaknesses regarding costs, performance, and ease of use.  

Operating agencies spend millions of dollars to deploy vehicle classification stations to collect classified 
count data, yet very few of these stations are ever subjected to a rigorous performance evaluation to ensure that they 
are reporting accurate data. As noted in the Traffic Monitoring Guide (FHWA, 2001), the quality of data collected 
depends on the operating agency to periodically calibrate, test, and validate the performance of classification 
sensors, but few operating agencies have an on-going performance monitoring system to ensure that well tuned 
classification stations do not drift out of tune. Both one time and periodic performance monitoring have been 
prohibitively labor intensive because the only option has been to manually validate the performance, e.g., classifying 
a sample by hand. When these studies are conducted, the manual classifications are usually of limited value both 
because the manual data are prone to human error, and among the few studies that have been published, most 
employ the conventional reporting periods used by the stations (typically 15 min periods or longer), which are too 
coarse, allowing over-counting errors to cancel under-counting errors. 

In the present study we develop a classification performance monitoring system to allow operating agencies 
to rapidly assess the performance of existing classification stations on a per vehicle basis. We eliminate most of the 
labor demands and instead, deploy a portable non-intrusive vehicle classification system (PNVCS) to classify 
vehicles, concurrent with an existing classification station. For this study we use a side-fire LIDAR (light detection 
and ranging) based classifier from Lee and Coifman (2012a) for the PNVCS. Fig. 1 shows a flowchart of our 
performance evaluation system. The existing classification station normally follows the three boxes within the 
dashed region (top left of the figure) when it is not under evaluation. The PNVCS is shown immediately to the right 
of the dashed region. To prevent classification errors from canceling one another in aggregate, we record per-vehicle 
record (pvr) data in the field from both systems. After the field collection the classification results are evaluated on a 
per-vehicle basis. Algorithms for time synchronization and for matching observations of a given vehicle between the 
two classification systems are developed in this study. These algorithms automatically compare the vehicle 
classification between the existing classification station and the PNVCS for each vehicle. If the two systems agree, 
the given vehicle is automatically taken as a success by the classification station under the implicit assumptions: (i) 
That few vehicles will be misclassified the same way by the two independent classification systems. (ii) That the 
PNVCS has sufficient accuracy so that its data can be used as a benchmark for the existing classification station (in 
this case Lee and Coifman, 2012a, found that the LIDAR system classified vehicles with 99.5% accuracy on an 
evaluation set of 21,769 non-occluded vehicles). 

The temporary deployment includes a video camera mounted close to the LIDAR sensors and pointed at 
their detection zone (right-most path in Fig. 1) to allow a human to assess any discrepancies. A human only looks at 
a given vehicle when the two systems disagree, and for this task we have developed tools to semi-automate the 
manual validation process, greatly increasing the efficiency and accuracy of the human user. The data sets in this 
study take only a few minutes for the user to validate an hour of pvr data from a multi-lane facility. 

Although we use a LIDAR based system in this study, the tools at the heart of the methodology are 
transferable to many PNVCS from conventional pneumatic tubes to emerging PNVCS such as the TIRTL by 
Control Specialists, AxleLight by Quixote, the prototype ORADS (more recently NTMS) by Spectra Research 
(CEOS, 2012; Peek Traffic, 2010; Little et al., 2001; Spectra Research, 2011). These emerging PNVCS were 
specifically developed to replace pneumatic tubes and use light beams just above the pavement to implement axle-
based classification. The TIRTL performed very well at measuring axle spacing on two lane highways, typically 
above 95% accuracy (Yu et al., 2010), though some studies found an error rate of 24% among the truck classes due 
to the default decision tree (Kotzenmacher et al., 2005; Minge, 2010; Minge et al., 2011). While the AxleLight had 
an error rate for the truck classes up to 34% in high volume across four lanes (Minge, 2010; Minge et al., 2011; 
Banks, 2008), which was attributed to the sensor mistaking closely-following two-axle vehicles for multi-axle 
trucks. Most of the errors in Minge (2010) and Minge et al. (2011) were corrected by post-processing the pvr data 
from AxleLight and TIRTL using a new decision tree. Meanwhile, other studies found the TIRTL performance 
degrades on four lane roads (French and French, 2006). Finally, commercial side-fire microwave radar systems do 
not currently appear to offer sufficient classification accuracy to be used for this application. Even allowing the 
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individual errors to cancel in aggregate data, the SmartSensor had an overall error rate for trucks of 46% 
(Kotzenmacher et al., 2005), 80% (Zwahlen et al, 2005), 50%-400% (French and French, 2006), 20%-50% (Yu et 
al., 2010) and the RTMS had an error rate for trucks of 25% (Kotzenmacher et al., 2005) and 40%-97% (French and 
French, 2006). While most of the previous studies used aggregate data, two studies used a small sample of pvr data, 
only a few hundred vehicles, and found the SmartSensor had an error rate for trucks of 13%-57% (Banks, 2008) and 
42% (Minge, 2010). A few studies considered video systems, e.g., Yu et al. (2010) found the length based 
classification from an Autoscope to be unacceptable, while Schwach et al. (2009) had an error rate for trucks of 
73%. 

The primary objective of this study is to demonstrate the viability of our methodology to use a PNVCS to 
evaluate the performance of an existing vehicle classification station, regardless of the PNVCS technology used. A 
secondary objective of this study is to demonstrate that the LIDAR based PNVCS from Lee and Coifman (2012a) 
indeed offers the required accuracy. The remainder of this report is organized as follows. First the process of 
collecting the concurrent pvr vehicle classification data from the LIDAR and existing classification station is 
presented. Second, the performance evaluation methodology is developed. Third, the methodology is applied to 
several permanent and temporary vehicle classification stations to evaluate axle and length-based classification. The 
evaluation data sets include over 21,000 vehicles, less than 8% of which required manual intervention. Finally, the 
report closes with a discussion and conclusions. 

METHODOLOGY OF USING A PNVCS TO EVALUATE CLASSIFICATION STATION 
PERFORMANCE 

This section develops the semi-automated performance evaluation methodology for an existing 
classification station using LIDAR PNVCS classification, as shown in Fig. 1. This section begins by reviewing the 
key features of the LIDAR based PNVCS. Then, it discusses the four key steps for the performance evaluation: first 
the input classification data itself, second the time synchronization algorithm, third the vehicle matching algorithm 
to match observations of a given vehicle between the two classification systems, and fourth the semi-automated tool 
to allow a human to rapidly review any discrepancies between the two classification systems. The discrepancies 
include both conflicting classifications and vehicles seen by just one of the systems. In the absence of a discrepancy, 
a vehicle is automatically recorded as a successful classification, without human intervention. 

A Brief Review of the LIDAR based PNVCS 
This pilot study uses a LIDAR based PNVCS mounted on a van, as shown in Fig. 2c This van mounted 

approach offers a distinct advantage over the other emerging PNVCS since the system does not require any 
calibration in the field, in fact the van can be classifying vehicles as it pulls up to the site. The LIDAR based 
PNVCS consists of a pair of Sick LMS 291-S05 scanning laser rangefinders, acting as vertical planar scanners, 
mounted as high as possible (approximately 2.2 m above ground) on the drivers side of the van in order to observe 
multiple adjacent lanes of traffic while minimizing occlusions. These LIDAR sensors were mounted with a 
separation of 1.4 m. They scan 180° of a vertical plane returning the distance to the nearest object (if any) at 0.5° 
increments with a maximum range of 80 m, at an update rate of approximately 37 Hz. Nonetheless, given the 
relatively low mounting location of the LIDAR sensors used in this study, vehicles in further lanes are susceptible to 
occlusions from vehicles in closer lanes. Using the same data set as used in the present study, Lee and Coifman 
(2012a) found roughly 11% of the vehicles were partially occluded and another 3% were totally occluded. Partial 
occlusions degrade the LIDAR classification performance, but the LIDAR classifier can automatically detect when a 
partial occlusion occurs. These vehicles are counted to ensure both detectors saw a single vehicle pass, but for now 
the classifications are not used since a partial occlusion in the LIDAR should not be correlated with 
misclassifications by the existing station. If simply setting the partially occluded vehicles aside like this is 
unacceptable for a given application, then Lee and Coifman (2012a) presents a means to classify them to one or 
more classes. They reported that roughly 50% of the partially occluded vehicles were assigned to a single class and 
could be processed automatically by the vehicle matching algorithm. The rest could be treated as a discrepancy and 
subjected to human evaluation with the semi-automated tool, thus, slightly increasing the number of vehicles sent 
for human assessment. For longer-term deployments we envision a dedicated trailer that could be parked alongside 
the road, with a boom to achieve a higher vantage point to reduce occlusions. 

Totally occluded vehicles will only be recorded in the classification station data, resulting in a discrepancy. 
This pilot study mounted the camera close to the LIDAR sensors, so for most cases in our data the occluded vehicles 
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cannot be manually verified. Like the partially occluded vehicles, any systematic errors present in the totally 
occluded vehicles should also be evident in the non-occluded vehicles, and so the simplest solution is to collect a 
slightly larger data set to accommodate the fact that some vehicles will be occluded. Unlike the partially occluded 
vehicles, however, the risk remains that an unobserved actuation arose from splashover rather than an actual vehicle. 
Fortunately, the presence of chronic splashover can be detected automatically from the classification station data 
using Lee and Coifman (2012b). Although the number of total occlusions was small in our study, many simple steps 
can be used to further reduce the number including: 

• mounting the LIDAR on a boom for a higher vantage point, 
• deploying a second camera on the far side of the roadway to supplement the manual evaluation, or  
• splitting the data collection into two sets- (1) with the LIDAR PNVCS deployed on the near side of the 

roadway and then (2) deployed on the far side of the roadway. Thereby ensuring that if the station 
exhibits chronic splashover problems, in at least half of the data it will be towards the LIDAR PNVCS 
and thus, will be unoccluded. 

The Classification Data 
Fig. 2a shows a hypothetical example of the time-space plane as a vehicle passes by the two LIDAR 

sensors and Fig. 2b shows the corresponding schematic at an instant, using the same distance scale. The vertical 
scanning LIDAR capture the profile of the passing vehicles and spatial offset between the paired sensors allows for 
speed measurements. We use Lee and Coifman (2012a) to classify vehicles from the LIDAR data. Briefly 
summarizing the process: first we segment a given vehicle's LIDAR returns from the background, group the returns 
together into a cluster, look for possible occlusions in further lanes, and then we measure several features of size and 
shape for each non-occluded vehicle cluster. The algorithm uses these features to classify the vehicle clusters into 
six vehicle classes: motorcycle (MC), passenger vehicle (PV), PV pulling a trailer (PVPT), single unit truck/bus 
(SUT), SUT pulling a trailer (SUTPT), and multiple unit truck (MUT). For this study PVPT are included with PV 
and SUTPT are included with MUT, following common axle-based classification conventions (Lee and Coifman, 
2012b). 

In the present study of existing classification stations we evaluate both axle-based classification and length-
based classification. We evaluate two permanent vehicle classification stations (total of three directional stations) 
each equipped with dual loop detectors and a piezoelectric sensor in each lane and two temporary vehicle 
classification deployments (total of four directional stations) with pneumatic tubes. All of these existing 
classification stations provide the conventional 13 axle-based classes and this research consolidates them into four 
classes to facilitate comparison with the LIDAR PNVCS, i.e., axle class 1 is mapped to MC, axle class 2-3 are 
mapped to PV, axle class 4-7 are mapped to SUT, and axle class 8-13 are mapped to MUT. The permanent vehicle 
classification stations also provide length-based vehicle classification with three length-classes that are intended to 
map to PV, SUT and MUT, respectively. Finally, we also tested the system at a single loop detector station deployed 
for real time traffic monitoring using Coifman and Kim (2009) for length-based classification. All of the data sets 
were collected in the Columbus, Ohio, metropolitan area. 

Time Synchronization 
The LIDAR PNVCS and the existing classification station clocks are independent, so before any 

comparisons are made it is necessary to first find the offset between the two systems. The algorithm has to 
accommodate the fact that any given vehicle may be seen in just one data set or the other due to detection errors and 
LIDAR occlusions. Our group has previously addressed a more complicated variant of this same problem for vehicle 
reidentification (Coifman and Cassidy, 2002), in which not only may a given vehicle be seen in just one of the data 
sets, but also vehicles will arrive in a different order in the two data sets. The updated algorithm is presented below. 
While the earlier vehicle reidentification had to address the reordering problem, in the current time synchronization 
problem the two locations are concurrent in space, so in this revision we use the arrival order to greatly simplify the 
problem of coordinating the two data sets. 

The algorithm currently uses arrivals in one lane, over one minute, though we envision that expanding to 
multiple lanes or longer duration would improve the precision in challenging conditions. We arbitrarily select one 
vehicle in the LIDAR data as the reference (0-th vehicle), examine all n vehicles that follow within a minute, and 
record their arrival times, ti

L. The only constraint is that there must be concurrent data from the classification station. 
We then step through the station's vehicles from the same lane, successively taking each one as the station's 
reference (K-th vehicle, with arrival time C

Kt ) to test the assumption that C
K

L
0 tt =  by evaluating all m vehicles that 
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follow within a minute, and their arrival times tj
C. For each value of K the algorithm tallies the number of times the n 

LIDAR vehicles arrive within one second of the m station vehicles, i.e., finds the rate of virtually matched vehicles 
(RVMK) from Equation (1). Fig. 3 shows an example of RVMK versus the resulting offset time, C

K
L
0 tt -  from the K-

th vehicle from SR-33 northbound in each lane. The algorithm selects the value of K with the largest RVMK and 
uses this as the final offset, it then subtracts the corresponding offset time, C

K
L
0 tt - , from the entire LIDAR data set. 

In Fig. 3 the final offset time from lane 1 is -436.6 sec and from lane 2 is -436.5 sec. So in this case the classification 
station clock is 436 sec later than the LIDAR. 

 

RVMK =
100%
n

1, ti
L − t0

L( )− t j
C − tK

C( ) <1sec,∀j ∈ K +1,K +m( )
0, otherwise

$

%
&

'&i=1

n

∑  (1) 

Vehicle Matching 
After time synchronization, most vehicles in one data set have a unique match in the other. However, the 

pvr data from many of the existing classification stations used in this study only reported arrival times to the integer 
second. So there can be many vehicles in either set that have two possible matches in the other data set. With 
subsecond precision in the time stamps most of these ambiguities would be resolved, but some would likely remain.  

There are several ways to address the problem of multiple possible matches. The simplest approach is to 
treat each of these events as a discrepancy and send all such cases to the human reviewer to sort out using the tools 
discussed in the next section (such an approach is particularly useful if one has the subsecond time stamp precision, 
so that few additional vehicles will be subject to human review). Since we want to minimize the need for manual 
evaluation, this study develops a vehicle matching algorithm that seeks to find the best match for a vehicle in one 
data set whenever it has two or more possible matches in the other data set. The basic idea is that when there are 
multiple possible matches for a vehicle, the algorithm will give preference to the matches that preserve the same 
arrival order in the two data sets. 

Formalizing the process, the i-th LIDAR PNVCS observation and j-th classification station observation are 
taken as a possible match if |ti

L – tj
C| < 1 sec. The results are summarized in a feasible vehicle matrix. The matrix is 

indexed by successive vehicle number in each data set (LIDAR on the ordinate and classification station on the 
abscissa). Each element of the matrix is the outcome of the temporal comparison for the ij pair. Fig. 4a shows an 
example of the feasible vehicle matrix using 11 successive vehicles from both data sets in lane 1 at SR-33 
northbound. Most cells are empty, indicating there is no match, while “O” indicates a possible match for the ij pair 
of vehicles. The matrix shows that two classification station vehicles (379 and 383) and two LIDAR vehicles (380 
and 381) have no matches in the other data set. These unmatched vehicles will automatically be sent for manual 
review by the algorithm (see next section). Upon reviewing the concurrent video, the two unmatched classification 
station vehicles were totally occluded in the LIDAR while the two unmatched LIDAR vehicles were completely 
missed by the classification station.  

A given vehicle can have at most one true match and indeed, most of the vehicles in Fig. 4a have a single 
match. If a given possible match is the only match in the given row and column, that match is retained as a final 
match. Otherwise, the vehicle matching algorithm has to choose between the possible matches, e.g., classification 
station vehicle 374 and LIDAR vehicle 372 each have two possible matches. The algorithm assumes that vehicles 
maintain the same order in the two data sets, in which case, the true (but unknown) matches should fall into 
sequences manifest as diagonal lines of possible matches at 45° in the feasible vehicle matrix. Whenever a vehicle 
has more than one possible match, the vehicle matching algorithm collects the group of all involved vehicles from 
each system (classification station vehicles 373-374 and LIDAR vehicles 372-373 in Fig. 4a). Fig. 4b shows an 
extreme hypothetical example, where almost every vehicle falls into one of three distinct groups of vehicles, as 
shown with dashed boxes in Fig. 4c. If there is a single longest sequence in a group, the algorithm selects that 
sequence as final matches, Fig. 4d. Otherwise, if there are two or more sequences tied for the longest sequence, the 
algorithm considers the classifications assigned by the two sensor systems and chooses the sequence with the best 
classification agreement, e.g., as would be necessary for group 2 in Fig. 4d.  

Automatic Comparison and Manual Verification Using a Semi-Automated Tool 
At this point in the analysis most vehicle observations have a unique match between the LIDAR PNVCS 

and the existing classification station. For each of these unique matches the algorithm compares the vehicle 
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classification from the two independent systems and if the systems agree (e.g., both systems report PV for a given 
unique match) the vehicle is taken as a success by the classification station with no human intervention. The small 
number of vehicle observations that remain are then marked for manual evaluation. These marked vehicles consist 
of the vehicles that were seen in only one of the data sets (thus having no match in the other data set) and the unique 
matches where the two systems disagree (e.g., one reports PV and the other reports SUT). 

Inspired by VideoSync (Caltrans, 2007), a purpose built software ground truthing tool with a graphical user 
interface (GUI) was developed in MATLAB to efficiently review the vehicles marked for manual evaluation and 
increase the accuracy of the human user. After the time synchronization and vehicle matching steps above, the GUI 
loads the pvr classifications from the classification station and the LIDAR PNVCS. The user can choose which 
set(s) of vehicles they wish to review: (i) seen only in LIDAR, (ii) seen only at the classification station, (iii) 
conflicting classifications between the two sources, and/or (iv) consistent classification between the two sources. 
Normally the user would select the three error conditions, i.e., sets i-iii.1 Next, the user chooses one or more lanes to 
review, then the GUI steps through all of the vehicles in the given set(s) and lane(s). Fig. 5 shows an example of the 
GUI as a SUT passes. For each vehicle the GUI displays the raw LIDAR data and the raw classification station data 
for a few seconds before and after the given vehicle detection (Figs. 5c and 5a, respectively). The GUI shows the 
video frame at the instant of the vehicle passage (Fig. 5b), and allows the user to step forward or backward in the 
video to see the temporal evolution if necessary (Fig. 5d). The bottom right corner of the GUI shows the user what 
vehicle class was assigned by the station and the LIDAR. After assessing the concurrent sensor and video data, the 
user records the observed vehicle class or detection error for the current actuation using the buttons in the two right-
most boxes of Fig. 5d. As soon as the user enters a selection, the GUI jumps to the next actuation in the selected 
set(s) and lane(s) until all of the vehicles have been reviewed in the given set(s) from the entire time period with 
video data. In this study the user typically spent 3-5 sec per vehicle reviewed (including seek time and loading time), 
but only about 8% of the actuations required review. The automated process does the bulk of the work, in this study 
it typically took the human only a few minutes to process the exceptions from all lanes over one hour of data. 

RESULTS OF USING A PNVCS TO EVALUATE CLASSIFICATION STATION 
PERFORMANCE 

Axle-Based Classification Stations 
As noted above, we collected concurrent LIDAR and axle classification station pvr data at two permanent 

vehicle classification stations (I-270 and SR-33) and two temporary deployments (Wilson Rd and Dublin Rd). Table 
1 enumerates the location, date, duration, and number of lanes in the first few columns. All locations yielded data for 
the direction of travel adjacent to the LIDAR equipped van (top rows in the table). Almost all of the locations 
provided sufficient view of the far lanes in the opposing direction to allow LIDAR classification, shown in the lower 
portion of the table. The one exception was I-270, where the median barrier and superelevation precluded a view of 
the opposing lanes. In any event, all lanes are numbered successively from the van, regardless of the direction of 
travel. We parked the van on both sides of Wilson Rd, hence both northbound and southbound nearside data for this 
location. 

Columns (a) and (b) show the number of actuations reported by the LIDAR and classification data 
(including any non-vehicle actuations). Columns (c)-(e) show the number of matched and unmatched actuations 
after the vehicle matching algorithm. Column (f) sums columns (c), (d), and (e), yielding the number of actuations 
seen by one or both systems. Column (g) tallies the number of partially occluded vehicles detected in the LIDAR (as 
per Lee and Coifman, 2012a) and seen by the classification station. Since the partial occlusions do not reflect any 
error by the classification station, at present they are excluded from further analysis. Column (h) shows the number 
of actuations for which the algorithm compared the respective classifications from the two systems and from this set, 
(i) tallies the disagreement. The percentage of disagreement is below 8% for all lanes studied and below 4% for 
most of them. Columns (j) and (k) reiterate (d) and (e) as percentages of (f). Finally, column (l) tallies the number of 
vehicles subject to manual verification (sum of columns (d), (e) and (i), as a percent of (f)). 

Table 2 summarizes the results from manual verification for the vehicles with a discrepancy in Table 1 
(columns (d), (e) and (i)). Of the vehicles that were not detected by the LIDAR (column (e)), 60% (353 out of 584) 
are due to completely occluded vehicles, 39% (226 out of 584) are due to the LIDAR missing unoccluded vehicles, 

                                                             
1 Set iv is included for development, both for verifying the performance when the two systems agree, and for generating ground 
truth data even when the two systems agree. 
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and 1% (5 out of 584) are due to non-vehicle actuations at the classification station. It turns out that all 335 of the 
actuations that were not detected at the classification stations (column (d)) were due to those stations missing the 
vehicles. Of the vehicles with conflicting classification (column (i)), the classification station was in error 84% of 
the time (571 out of 677). Assuming few vehicles are misclassified the same way by the two systems, all of the 
agreements are automatically tallied as a success by the classification station. As a result, the classification stations 
exhibited an overall misclassification rate of 3% (sum of columns (p) and (q) as a percent of (h)), and including the 
undetected vehicles, an overall error rate of 4.1% (sum of columns (m), (n), (p), and (q) divided by [(f)-(m)]). The 
highest error rate observed in a lane was 10.3%. 

In separate work our group manually verified the class of all of the "Adjacent" direction vehicles listed in 
the top of Table 1 (Lee and Coifman, 2012a; Kim and Coifman, 2013). Column (h) shows that a total of 15,791 of 
these vehicles were compared between the two classification systems and after subtracting off the disagreements in 
column (i), a total of 15,271 were assigned the same class by the two systems. As noted above, these vehicles 
assigned to the same class would normally be labeled "success" automatically, without review by a person. To 
ensure the validity of the assumption that no individual vehicles were misclassified the same way by both systems, 
(and thus, by extension, degrade the accuracy of the results) we found that within the manually verified data set, 
99.8% (15,245 out of 15,271 vehicles) were assigned the correct vehicle class and only 0.2% (26 vehicles) were 
incorrectly classified.  

Table 3 compares the specific classification of the non-occluded vehicles detected by both systems across 
all of the data sets. The columns show the axle classification and rows show the LIDAR classification. The bold 
numbers on the diagonal show the agreement between the two systems and all of the numbers off the axis reflect the 
disagreements. The third row from the bottom and the second column from the right tally the class of vehicles that 
were only seen by one of the systems. The last column and second to the last row tally the row and column total, 
respectively. The final row presents the number of partially occluded vehicles that were excluded from the 
comparisons, sorted by axle class for reference. Collectively, 4.6% of the non-occluded vehicles (919 out of 20,113) 
are detected by only one system, of the remaining 19,194 non-occluded vehicles that were detected by both systems, 
96.5% (18,517 vehicles) were assigned the same classification from the two systems and 3.5% (677 vehicles) were 
not. 

As noted above, all of the vehicles assigned the same class by both systems are automatically taken to be 
correct, while all of the conflicting classifications were manually validated (i.e., the off-diagonal cells in Table 3). 
After conducting the manual validation we refer to the collection of the results as pseudo ground truth since the cells 
that were originally in agreement would not be manually validated2. The axle classification station performance 
across all of the data sets is compared against the pseudo ground truth in Table 4. There are a total of 19,760 
vehicles in the pseudo ground truth data, including 19,194 non-occluded vehicles seen by both systems, 335 vehicles 
not detected by the axle classification stations, 226 vehicles not detected by the LIDAR, and 5 non-vehicle 
actuations in the axle data. The remaining 353 vehicles from Table 3 were completely occluded in the video as well. 
The completely occluded vehicles are excluded from the comparison, but their assigned axle class is reported in the 
final row for reference. After generating the pseudo ground truth comparison in Table 4, no vehicle switched 
columns from Table 3 since the axle classifications did not change, but many of the vehicles were reassigned to new 
rows as a result of the manual validation. The accuracy of the pseudo ground truth data should be above 99% 
because most vehicles with the corresponding classification are correctly classified (as per above, we found that only 
0.2% of the vehicles with the same classification from the two systems were incorrectly classified). The 
classification stations exhibited 95% accuracy overall, but dramatically different performance by class. The best 
performance was on PV and worst performance on MC. It is also important to take care reading the table, although 
84% of the vehicles classified as SUT by the axle classification stations were indeed SUT (column total), only 66% 
of the SUT were correctly classified as such (row total).  

It turns out that all 160 PV misclassified as MUT (over 10% of the vehicles classified as MUT) were due to 
PVPT or systematic errors by the classification station discussed in Kim and Coifman (2013). These systematic 
errors illustrate how common it is for a classification station to be poorly tuned in conventional practice. We 
selected the stations randomly, and 100% of the permanent classification stations sampled exhibited chronic 
problems that were easily fixed after Kim and Coifman documented their occurrence using a labor intensive, manual 
approach to find the errors. That earlier effort by our group served as motivation to automate the process, with the 

                                                             
2As noted above, in this case even the results where the two systems agreed were validated, to verify the LIDAR performance 
and ensure validity of the fundamental assumption: that classification errors by the two systems are uncorrelated. 
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result being the current study. Meanwhile, the large number of PV misclassified as SUT and vice versa is due to the 
fact that the range of feasible axle spacing overlaps between these two groups (Kim and Coifman, 2013). 

This pseudo ground truth analysis is repeated by individual station and Table 5 summarizes the 
performance. The first few columns report the number of vehicles seen in the pseudo ground truth for the given 
class, the next set of columns present the percentage of vehicles correctly classified in the given class, and the third 
set of columns present the percentage of axle classification by the given station that were correct in the given class. 
To help interpret these results, the final row of Table 5 summarizes Table 4. For example, the set of columns 
presenting the percentage of pseudo ground truth correctly classified in Table 5 reiterates the last column in Table 4. 
All stations report above 89% correct classification and most are above 92%. Table 4 shows the worst performance 
for motorcycles, with only 27% being correctly classified. As shown in Table 5, the temporary pneumatic tubes 
(Dublin Rd and Wilson Rd) were much better at detecting and classifying motorcycles than the permanent 
classification stations (I-270 and SR-33). Reviewing the data strictly from the two permanent classification stations, 
the pseudo ground truth include 15 motorcycles, of which only 1 (7%) was correctly classified by the classification 
stations. Meanwhile, 9 (60%) of the motorcycles were misclassified as longer vehicles and 5 (33%) passed 
completely undetected. Given the fact that these data come from only two classification stations and the number of 
motorcycles is small, further study is warranted.   

Length-Based Classification Stations 
As noted in the introduction, we also used this methodology to evaluate the performance of length-based 

classification. All of the permanent vehicle classification stations also provide length-based classification and we 
also tested the system at a single loop detector station on I-71 using Coifman and Kim (2009) for length-based 
classification. All vehicles below 28 ft are assigned to length class 1, all remaining vehicles below 47 ft are assigned 
to length class 2, and all vehicles above 47 ft are assigned length class 3; and these length classes are intended to 
roughly map to PV, SUT and MUT, respectively. So for our analysis we map LIDAR MC and PV to length class 1, 
LIDAR SUT to length class 2, and LIDAR MUT to length class 3. Tables 6 and 7 repeat the comparisons of the 
previous section, now applied to the length-based classification stations. The length-based performance and number 
of vehicle requiring manual validation are comparable to the axle-based classification performance.  

DISCUSSION AND CONCLUSIONS 

Vehicle classification data are critical to many transportation applications, but the quality of data collected 
depends on the operating agency to periodically calibrate, test, and validate the performance of classification 
sensors. All to often the performance evaluations necessary to ensure classification accuracy simply are not 
conducted because they are so labor intensive. When the studies are conducted, typically they are too coarse, 
allowing over-counting errors to cancel under-counting errors. Our group previously undertook a rigorous manual 
performance evaluation of several permanent classification stations selected at random and found that all of them 
exhibited chronic problems, e.g., at the time of evaluation, over 10% of the vehicles classified as multi-unit trucks 
from the existing stations were actually passenger vehicles. Most of these problems proved to be easy to fix once the 
error was detected. The results of this labor intensive effort showed the clear benefit of the performance evaluation; 
however, it is unrealistic to expect this level of labor to calibrate all stations, hence the motivation for the present 
work to automate most of the comparison process. 

To address these challenges the present work develops a classification performance monitoring system to 
allow operating agencies to rapidly assess the health of their classification stations on a per vehicle basis. We 
eliminate most of the labor demands and instead, deploy a PNVCS to classify vehicles, concurrent with an existing 
classification station. To prevent classification errors from canceling one another in aggregate, we record per-vehicle 
record (pvr) data in the field from both systems. After the field collection the classification results are evaluated on a 
per-vehicle basis. This work requires several intermediate steps, developed herein, including synchronizing the 
independent clocks and matching observations of a given vehicle between the two classification systems. If the two 
systems agree for a given vehicle, it is automatically taken as a success by the classification station under the 
implicit assumptions: (i) That few vehicles will be misclassified the same way by the two independent systems. (ii) 
That the PNVCS has sufficient accuracy so that its data can be used as a benchmark for the existing classification 
station. For this application the PNVCS includes a time synchronized video camera to allow a human to assess the 
discrepancies. A human only looks at a given vehicle when the two systems disagree, and we developed tools to 
semi-automate the manual validation process, greatly increasing the efficiency and accuracy of the human user. The 
data sets in this study take only a few minutes for the user to validate an hour of pvr data. If personnel time were at a 



  8 

 

premium one could even use a threshold to trigger manual review, e.g., if fewer than 5% of the vehicles were 
marked for manual review simply accept the existing classification station to be performing well enough. Still, the 
manual review should prove helpful in diagnosing the problems at those stations that fail this threshold test. 

The primary objective of this study is to demonstrate the viability of our methodology to use a PNVCS to 
rapidly evaluate the performance of an existing vehicle classification station, regardless of the PNVCS technology 
used. This study uses a LIDAR based PNVCS but our basic approach is compatible with many other PNVCS, such 
as conventional pneumatic tubes or the newer TIRTL and AxleLight, provided the given PNVCS provides sufficient 
accuracy. Because of the LIDAR occlusions arising from the low mounting height, this analysis does not explicitly 
verify the classification station vehicle counts during the occlusions. However, if chronic errors are present that 
would degrade the occluded vehicle performance, they should still become evident via this work, e.g., if the 
classification station tends to miss motorcycles, we will not catch occluded motorcycles, but the error will still be 
evident over the many non-occluded motorcycles. 

A secondary objective of this study is to demonstrate that our prototype LIDAR based PNVCS indeed 
offers the required accuracy for the performance evaluation. Conceptually the two systems should exhibit 
independent error patterns since the LIDAR approach relies on vehicle height while most conventional vehicle 
classification technologies rely on weight or magnetic length. Still, there may be some correlation between features 
(e.g., features that are functions of the vehicle length), and for those, the manual evaluation criteria could be 
broadened, e.g., "look at all vehicles that were within N ft of the length threshold." Such an extension proved 
unnecessary in the current work. A manual evaluation of 15,271 vehicles from which the LIDAR gave the same 
class as the existing classification station found that 99.8% were assigned the correct vehicle class. Furthermore, the 
LIDAR based PNVCS has previously demonstrated 99.5% classification accuracy (Lee and Coifman, 2012a). 

The evaluation data sets come from several different classification stations and they include over 21,000 
vehicles. We separately evaluated length-based classification stations and axle-based classification stations, each 
yielding similar results. The automated process does the bulk of the work. In each case about 8% of the vehicles 
required manual intervention. The user typically spent 3-5 sec per vehicle reviewed, translating into only a few 
minutes to process the exceptions from all lanes over one hour of data. The new method caught all of the errors that 
previously required a very labor intensive evaluation to find. This approach offers a cost effective solution to ensure 
that classification stations are providing accurate data. For permanent classification stations the additional labor is a 
fraction of the cost to deploy the station in the first place. 
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Table 1, Summary of the automated comparison of vehicle classification between LIDAR and axle 
data at seven directional classification stations 

LIDAR 
sensor 

direction  
relative to 

vehicle  
travel 

direction 

 
Loca- 
tion 

(direc- 
tion) 

 
Date 

Dura- 
tion 
(hh: 
min) 

Lane 
num- 
ber 

from 
LIDAR 

Number of 
vehicles seen 

in; 

From the algorithm 
of vehicle matching 

Number 
of 

vehicles 
passing 

the 
location 

(f) 

Number 
of 

partially 
occluded 
vehicles 

(g) 

Comparison of 
vehicle 

classification 

% vehicles 
not detected by; Number of  

vehicles 
manually 
confirmed 

(l) 

Number  
of 

vehicles 
seen in 

both 
LIDAR 

and Axle 
(c) 

Number of 
vehicles only 

seen in; 

LIDAR 
(a) 

Axle 
(b) 

LIDAR 
(d) 

Axle 
(e) 

Number  
of 

compared 
vehicles 

(h) 

Dis- 
agree- 
ment 

(i) 

LIDAR 
(j) 

Axle 
(k) 

Adjacent 

I-270 
(SB) 11/02/2010 5:00 

1 5,415 5,452 5,389 26 63 5,478 n/a 5,389 188 
(3.5%) 1.2% 0.5% 277 

(5.1%) 

2 5,335 5,488 5,303 32 185 5,520 641 4,662 145 
(3.1%) 3.4% 0.6% 362 

(6.6%) 

3 2,647 2,789 2,615 32 174 2,821 713 1,902 24 
(1.3%) 6.2% 1.1% 230 

(8.2%) 
Dublin 
(SB) 10/28/2010 2:50 1 1,344 1,317 1,313 31 4 1,348 n/a 1,313 80 

(6.1%) 0.3% 2.3% 115 
(8.5%) 

Wilson 
(NB) 10/28/2010 1:40 1 666 664 658 8 6 672 n/a 658 24 

(3.6%) 0.9% 1.2% 38 
(5.7%) 

Wilson 
(SB) 10/28/2010 1:40 1 711 712 701 10 11 722 n/a 701 21 

(3.0%) 1.5% 1.4% 42 
(5.8%) 

SR-33 
(NB) 08/03/2011 1:10 

1 732 693 684 48 9 741 n/a 684 32 
(4.7%) 1.2% 6.5% 89 

(12.0%) 

2 569 562 547 22 15 584 65 482 6 
(1.2%) 2.6% 3.8% 43 

(7.4%) 

Subtotal of adjacent 12:20 - 17,419 17,677 17,210 209 467 17,886 1,419 15,791 520 
(3.3%) 2.6% 1.2% 1,196 

(6.7%) 

Opposite 

Dublin 
(NB) 10/28/2010 2:50 2 940 943 933 7 10 950 75 858 52 

(6.1%) 1.1% 0.7% 69 
(7.3%) 

Wilson 
(NB) 10/28/2010 1:40 2 749 752 742 7 10 759 58 684 18 

(2.6%) 1.3% 0.9% 35 
(4.6%) 

Wilson 
(SB) 10/28/2010 1:40 2 741 735 723 18 12 753 47 676 24 

(3.6%) 1.6% 2.4% 54 
(7.2%) 

SR-33 
(SB) 08/03/2011 1:10 

3 592 587 548 44 39 631 53 495 9 
(1.8%) 6.2% 7.0% 92 

(14.6%) 

4 888 884 838 50 46 934 148 690 54 
(7.8%) 4.9% 5.4% 150 

(16.1%) 

Subtotal of opposite 7:20 - 3,910 3,901 3,784 126 117 4,027 381 3,403 157 
(4.6%) 2.9% 3.1% 400 

(9.9%) 

Overall 19:40 - 21,329 21,578 20,994 335 584 21,913 1,800 19,194 677 
(3.5%) 2.7% 1.5% 1,596 

(7.3%) 
n/a: occlusions are infeasible in this lane because it is adjacent to the LIDAR sensor 
(a) = (c + d) 
(b) = (c + e) 
(f) = (a + e) = (b + d) 
(h) = (c) – (g) 
(j) = (e) / (f) 
(k) = (d) / (f) 
(l) = (d + e + i), where the percentage is relative to (f) 
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Table 2, Manual verification of the vehicles with conflicting classifications or only seen by one system 
using the semi-automated tool 

LIDAR 
sensor 

direction  
relative to 

vehicle  
travel 

direction 

Loca- 
tion 

(direc- 
tion) 

Lane 
num- 
ber 

from 
LIDAR 

Number of 
vehicles 

not 
detected  

by LIDAR 
(e) 

Reason 

Number of 
vehicles 

not 
detected   
by Axle 

(d) 

Reason 
Number  

of 
vehicles  

in 
disagree- 

ment 
(i) 

Verification of 
disagreement  

 
% axle 
miss- 

classified 
(r) 

 
 

% total  
axle 
error 
(s) 

Totally 
occluded 
vehicle 

LIDAR 
missed 
vehicle 

Axle 
non- 

vehicle 
actuation 

(m) 

Axle 
missed 
vehicle 

 (n) 

LIDAR 
non- 

vehicle 
actuation 

LIDAR 
correct, 

Axle 
incorrect 

 (p) 

LIDAR 
incorrect, 

Axle 
correct 

 

LIDAR 
incorrect 

Axle 
incorrect 

(q) 

Adjacent 

I-270 
(SB) 

1 63 n/a 63 0 26 26 0 188 148 36 4 2.8% 3.2% 

2 185 116 69 0 32 32 0 145 113 30 2 2.5% 2.6% 

3 174 141 33 0 32 32 0 24 20 4 0 1.1% 1.7% 
Dublin 
(SB) 1 4 n/a 4 0 31 31 0 80 76 4 0 5.8% 7.9% 

Wilson 
(NB) 1 6 n/a 6 0 8 8 0 24 22 2 0 3.3% 4.5% 

Wilson 
(SB) 1 11 n/a 11 0 10 10 0 21 18 3 0 2.6% 3.9% 

SR-33 
(NB) 

1 9 n/a 9 0 48 48 0 32 26 4 2 4.1% 10.3% 

2 15 8 7 0 22 22 0 6 5 1 0 1.0% 4.5% 

Subtotal of adjacent 467 265 202 0 209 209 0 520 428 84 8 2.8% 3.6% 

Opposite 

Dublin 
(NB) 2 10 5 1 4 7 7 0 52 48 3 1 5.7% 6.3% 

Wilson 
(NB) 2 10 5 5 0 7 7 0 18 15 3 0 2.2% 2.9% 

Wilson 
(SB) 2 12 10 2 0 18 18 0 24 22 2 0 3.3% 5.3% 

SR-33 
(SB) 

3 39 27 12 0 44 44 0 9 6 3 0 1.2% 7.9% 

4 46 41 4 1 50 50 0 54 42 11 1 6.2% 10.1% 

Subtotal of opposite 117 88 24 5 126 126 0 157 133 22 2 4.0% 6.6% 

Overall 584 353 226 5 335 335 0 677 561 106 10 3.0% 4.1% 
n/a: occlusions are infeasible in this lane because it is adjacent to the LIDAR sensor  
 
 (r) = (p+q) / (h) 
 (s) = (p+q+m+n)/(f-m) 
 
Note (f) and (h) are shown in Table 1. 
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Table 3, Comparison of LIDAR vehicle classification and axle vehicle classification across seven 
directional locations 

Overall 

Axle vehicle classification Number of 
LIDAR  
vehicles 

not detected 
by axle 
sensor 

Total 
number of 

LIDAR 
vehicles 

Motor- 
cycle 

Passenger 
vehicle* 

Single 
unit 

truck 

Multiple 
unit 

truck* 

LIDAR 
vehicle 

classification 

Motorcycle 6 12 1 0 12 31 
Passenger vehicle* 2 16,751 127 159 283 17,322 
Single unit truck 1 212 530 96 28 867 

Multiple unit truck* 1 47 19 1,230 12 1,309 
Number of axle vehicles 

not detected by LIDAR sensor 3 555 10 16 - 584 

Total number of axle vehicles above 13 17,577 687 1,501 335 20,113 

Number of partially occluded 
vehicles excluded 

in the comparison matrix 
2 1,571 56 171 - 1,800 

Passenger vehicle* includes passenger vehicle and passenger vehicle pulling a trailer. 
Multiple unit truck* includes single unit truck pulling a trailer and multiple unit truck. 
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Table 4, Comparison of pseudo ground truth data and axle vehicle classification across seven 
directional locations 

Overall 

Axle vehicle classification Number of 
LIDAR vehicles 
not detected by 

axle sensor 

Row 
total 

 
%  

correct 
Motor- 
cycle 

Passenger  
vehicle* 

Single 
unit  

truck 

Multiple 
unit 

truck* 

Pseudo 
ground 

truth data  

Motorcycle 6 2 6 3 5 22 27% 

Passenger vehicle* 2 17,001 94 160 289 17,546 97% 

Single unit truck 1 196 574 79 25 875 66% 

Multiple unit truck* 1 30 9 1,256 16 1,312 96% 

Non-vehicle  
actuation in axle data 2 3 0 0 - 5 - 

Column total above 12 17,232 683 1,498 335 19,760 - 
% correct 50% 99% 84% 84% - - 95% 

Totally occluded vehicle  1 345 4 3 - 353 - 
Passenger vehicle* includes passenger vehicle and passenger vehicle pulling a trailer. 
Multiple unit truck* includes single unit truck pulling a trailer and multiple unit truck. 
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Table 5, Summary evaluation of each axle vehicle classification station by vehicle class. Note Wilson 
Rd northbound and southbound includes both Wilson Rd adjacent to and opposite from the 
LIDAR sensor 

Location Dire- 
ction 

A number of vehicles  
from pseudo 

ground truth data 

% of pseudo ground  
truth vehicle classified  

correctly 

% of correct axle 
classification 

% of 
correct 

 classifi- 
cation 

 over all  
vehicles MC PV* SUT MUT* MC PV* SUT MUT* MC PV* SUT MUT* 

I-270 SB 7 10,561 500 1,140 14% 99% 61% 97% 50% 98% 95% 92% 97% 

Dublin  
Rd 

NB 2 795 63 6 50% 94% 87% 100% 20% 99% 72% 22% 93% 
SB 2 1,282 53 11 50% 92% 87% 100% 100% 99% 61% 21% 92% 

Wilson  
Rd 

NB 1 1,280 60 27 100% 96% 97% 100% 100% 100% 77% 60% 96% 
SB 2 1,360 29 27 100% 95% 90% 100% 100% 100% 63% 54% 95% 

SR-33 
NB 5 1,114 79 54 0% 95% 57% 87% - 99% 94% 72% 92% 
SB 3 1,154 91 47 0% 93% 46% 79% 0% 98% 84% 62% 89% 

Overall 22 17,546 875 1,312 27% 97% 66% 96% 50% 99% 84% 84% 95% 
PV* includes passenger vehicle and passenger vehicle pulling a trailer.  
MUT* includes single unit truck pulling a trailer and multiple unit truck.  
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Table 6, Comparison of pseudo ground truth data and length-based vehicle classification across four 
directional locations 

Overall 
Length class from  

loop detector 
Number of  

LIDAR vehicles  
not detected 

 by loop detector 

Row  
total 

%  
correct 

Class 1 Class 2 Class 3 

Pseudo  
ground  
truth 
data 

Passenger vehicle* 15,623 256 66 271 16,216 96% 

Single unit truck 125 590 8 26 749 79% 

Multiple unit truck* 21 23 1,286 16 1,346 96% 

Non-vehicle actuation  
in loop detector data 1 0 0 - 1 - 

Column total above 15,770 869 1,360 313 18,312 - 

% correct 99% 68% 95% - - 96% 

Totally occluded vehicles 498 7 5  - 510  - 

Passenger vehicle* includes passenger vehicle and passenger vehicle pulling a trailer. 
Multiple unit truck* includes single unit truck pulling a trailer and multiple unit truck. 
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Table 7, Summary evaluation of each length-based vehicle classification station by vehicle class 

Location 
(traffic 

condition) 

Dire- 
ction 

A number of vehicles 
from pseudo 

ground truth data 

% of pseudo ground 
truth vehicle  

classified correctly 

% of correct loop 
classification 

% of 
correct  

classification 
over all vehicles 

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

I-71  
(free flow) SB 1,428 32 51 96% 50% 94% 99% 42% 84% 95% 

I-71  
(Congestion) SB 1,967 38 40 97% 61% 98% 99% 47% 95% 97% 

I-270 
(free flow) SB 10,546 509 1,153 97% 92% 97% 99% 70% 95% 97% 

SR-33 
(free flow) 

NB 1,117 81 54 94% 69% 81% 98% 79% 96% 92% 

SB 1,158 89 48 92% 31% 73% 95% 60% 92% 87% 
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Figure 1, Flowchart of the evaluation of an existing vehicle classification station using LIDAR PNVCS 

vehicle classification.  
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Figure 2, A hypothetical example of a vehicle passing by the two side-fire LIDAR sensors: (a) in time-

space plane and (b) a top-down schematic of the scene at an instant. (c) A photograph of the 
LIDAR equipped van showing the sensors used in this study. 
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Figure 3, RVMK versus the resulting offset time as a function of K from SR-33 northbound, (a) Lane 1, 

the peak shows the final offset time is -436.6 sec, and (b) Lane 2, the peak shows the final 
offset time is -436.5 second. 
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Figure 4, (a) A feasible vehicle matrix, summarizing the outcome from the difference of arrival times 

between the LIDAR and classification station data in lane 1 at SR-33 northbound. (b-d) 
extreme hypothetical example: (b) hypothetical feasible vehicle matrix in which many rows 
and columns have multiple matches, (c) isolating the distinct groups of vehicles, the groups 
are numbered for reference, (d) selecting the longest sequence from the given group. Note 
that the two sequences in group 2 are equal length, so the algorithm would then compare the 
classification results from the two systems and select the sequence with the strongest 
similarity between the two systems. 
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Figure 5, A snapshot of the semi-automated GUI verification tool processing a conflicting 

classification for a vehicle in lane 1 at SR-33 northbound. The GUI window consists of four 
interfaces: (a) plot of transition pulses, the plot shows for each lane the classification station 
data (top curve) and LIDAR data (bottom curve) and the current instant is shown with a 
vertical dashed line, (b) the current video frame, (c) the LIDAR returns from the vehicle in 
question, and (d) a panel for controlling the review and entering ground truth data. So in this 
case the GUI is at the second visible pulse in lane 1 (counted from the left hand side) and is 
ready for the user to assess the data using the buttons on the right of part (d). 
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